Search results

1 – 10 of 565
Article
Publication date: 7 May 2019

Francisco Valero, Francisco Rubio, Antonio José Besa and Carlos Llopis-Albert

The purpose is to create an algorithm that optimizes the trajectories that an autonomous vehicle must follow to reduce its energy consumption and reduce the emission of greenhouse…

Abstract

Purpose

The purpose is to create an algorithm that optimizes the trajectories that an autonomous vehicle must follow to reduce its energy consumption and reduce the emission of greenhouse gases.

Design/methodology/approach

An algorithm is presented that respects the dynamic constraints of the robot, including the characteristics of power delivery by the motor, the behaviour of the tires and the basic inertial parameters. Using quadratic sequential programming with distributed and non-monotonous search direction (Quadratic Programming Algorithm with Distributed and Non-Monotone Line Search), an optimization algorithm proposed and developed by Professor K. Schittkowski is implemented.

Findings

Relations between important operating variables have been obtained, such as the evolution of the autonomous vehicle’s velocity, the driving torque supplied by the engine and the forces acting on the tires. In a subsequent analysis, the aim is to analyse the relationship between trajectory made and energy consumed and calculate the reduction of greenhouse gas emissions. Also this method has been checked against another different methodology commented on in the references.

Research limitations/implications

The main limitation comes from the modelling that has been done. As greater is the mechanical systems analysed, more simplifying hypotheses should be introduced to solve the corresponding equations with the current computers. However, the solutions are obtained and they can be used qualitatively to draw conclusions.

Practical implications

One main objective is to obtain guidelines to reduce greenhouse gas emissions by reducing energy consumption in the realization of autonomous vehicles’ trajectories. The first step to achieve that is to obtain a good model of the autonomous vehicle that takes into account not only its kinematics but also its dynamic properties, and to propose an optimization process that allows to minimize the energy consumed. In this paper, important relationships between work variables have been obtained.

Social implications

The idea is to be friendly with nature and the environment. This algorithm can help by reducing an instance of greenhouse gases.

Originality/value

Originality comes from the fact that we not only look for the autonomous vehicle’s modelling, the simulation of its motion and the analysis of its working parameters, but also try to obtain from its working those guidelines that are useful to reduce the energy consumed and the contamination capability of these autonomous vehicles or car-like robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 February 2005

A. Miller, P. Allen, V. Santos and F. Valero‐Cuevas

Robotic hands are still a long way from matching the grasping and manipulation capability of their human counterparts, but computer simulation may help us understand this…

2652

Abstract

Purpose

Robotic hands are still a long way from matching the grasping and manipulation capability of their human counterparts, but computer simulation may help us understand this disparity. We present our publicly available simulator, and describe our research projects involving the system including the development of a human hand model derived from experimental measurements.

Design/methodology/approach

Unlike other simulation systems, our system was built specifically to analyze grasps. It can import a wide variety of robot designs by using standard descriptions of the kinematics and link geometries. Various components support the analysis of grasps, visualization of results, dynamic simulation of grasping tasks, and grasp planning.

Findings

The simulator has been used in several grasping research problems and can be used to plan grasps for an actual robot. With the aid of a vision system, we have shown that these grasps can be executed by a robot.

Research limitations/implications

We are currently developing methods to handle deformable surfaces, tendon driven models, and non‐ideal joints in order to better model human grasping.

Practical implications

This work is part of our current project to create a biomechanically realistic human hand model to better understand what features are most important to mimic in the designs of robotic hands. Such a model will also help clinicians better plan reconstructive hand surgeries.

Originality/value

We describe our publicly available grasping simulator and review experiments performed with it. The paper demonstrates the usefulness of this system as a tool for grasping research.

Details

Industrial Robot: An International Journal, vol. 32 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 August 2010

Francisco Rubio, Francisco Valero, Joseph Lluís Sunyer and Antonio Garrido

The purpose of this paper is to solve the trajectory planning problem of industrial robots in a complex environment.

Abstract

Purpose

The purpose of this paper is to solve the trajectory planning problem of industrial robots in a complex environment.

Design/methodology/approach

A simultaneous algorithm was presented in which the trajectory was generated gradually as the robot moves. It takes into account the presence of obstacles (to avoid collisions) and differential constraints related to the dynamics of the robotic system. The method poses an optimization problem that aims at minimizing the time to perform the trajectory when several interpolation functions are used.

Findings

A new approach to solving the trajectory planning problem in which the behaviour of four operational parameters (execution time, computational time, distance travelled and number of configurations) have been analyzed when changing the interpolation functions, therefore enabling the user to choose the most efficient algorithm depending on which parameter the user is most interested in. From the examples solved the interpolation function that yields the best results has been found.

Research limitations/implications

This new technique is very time consuming due to the great number of mathematical calculations that have to be made. However, it yields a solution.

Practical implications

The algorithm is able to obtain the solution to the trajectory planning problem for any industrial robot. Also, even mobile obstacles in the workspace could be incorporated at the same time as the robot is moving and creating the path and the time history of motion.

Originality/value

It gives a new tool for solving the trajectory planning problem and describes the best interpolation function.

Details

Industrial Robot: An International Journal, vol. 37 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 October 2012

Francisco Rubio, Fares J. Abu‐Dakka, Francisco Valero and Vicente Mata

The purpose of this paper is to compare the quality and efficiency of five methods for solving the path planning problem of industrial robots in complex environments.

1928

Abstract

Purpose

The purpose of this paper is to compare the quality and efficiency of five methods for solving the path planning problem of industrial robots in complex environments.

Design/methodology/approach

In total, five methods are presented for solving the path planning problem and certain working parameters have been monitored using each method. These working parameters are the distance travelled by the robot and the computational time needed to find a solution. A comparison of results has been analyzed.

Findings

After this study, it could be easy to know which of the proposed methods is most suitable for application in each case, depending on the parameter the user wants to optimize. The findings have been summarized in the conclusion section.

Research limitations/implications

The five techniques which have been developed yield good results in general.

Practical implications

The algorithms introduced are able to solve the path planning problem for any industrial robot working with obstacles.

Social implications

The path planning algorithms help robots perform their tasks in a more efficient way because the path followed has been optimized and therefore they help human beings work together with the robots in order to obtain the best results from them.

Originality/value

The paper shows which algorithm offers the best results, depending on the example the user has to solve and the parameter to be optimized.

Details

Industrial Robot: An International Journal, vol. 39 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 January 2012

Francisco Rubio, Francisco Valero, Joseph Sunyer and Juan Cuadrado

The purpose of this paper is to analyze the impact of the torque, power, jerk and energy consumed constraints on the generation of minimum time collision‐free trajectories for…

1385

Abstract

Purpose

The purpose of this paper is to analyze the impact of the torque, power, jerk and energy consumed constraints on the generation of minimum time collision‐free trajectories for industrial robots in a complex environment.

Design/methodology/approach

An algorithm is presented in which the trajectory is generated under real working constraints (specifically torque, power, jerk and energy consumed). It also takes into account the presence of obstacles (to avoid collisions) and the dynamics of the robotic system. The method solves an optimization problem to find the minimum time trajectory to perform the tasks the robot should do.

Findings

Important conclusions have been reached when solving the trajectory planning problem related to the value of the torque, power, jerk and energy consumed and the relationship between them, therefore enabling the user to choose the most efficient way of working depending on which parameter he is most interested in optimizing. From the examples solved the authors have found the relationship between the maximum and minimum values of the parameters studied.

Research limitations/implications

This new approach tries to model the real behaviour of the actuators in order to be able to upgrade the trajectory quality, so a lot of work has to be done in this field.

Practical implications

The algorithm solves the trajectory planning problem for any industrial robot and the real characteristics of the actuators are taken into account, which is essential to improve the performance of it.

Originality/value

This new tool enables the performance of the robot to be improved by combining adequately the values of the mentioned parameters (torque, power, jerk and consumed energy).

Details

Industrial Robot: An International Journal, vol. 39 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 March 2011

Nuria Rosillo, Angel Valera, Francesc Benimeli, Vicente Mata and Francisco Valero

The purpose of this paper is to present the development and validation of a methodology which allows modeling and solving the inverse and direct dynamic problem in real time in…

Abstract

Purpose

The purpose of this paper is to present the development and validation of a methodology which allows modeling and solving the inverse and direct dynamic problem in real time in robot manipulators.

Design/methodology/approach

The robot dynamic equation is based on the Gibbs‐Appell equation of motion, yielding a well‐structured set of equations that can be computed in real time. This paper deals with the implementation and calculation of the inverse and direct dynamic problem in robots, with an application to the real‐time control of a PUMA 560 industrial robot provided with an open control architecture based on an industrial personal computer.

Findings

The experimental results show the validity of the dynamic model and that the proposed resolution method for the dynamic problem in real time is suitable for control purposes.

Research limitations/implications

The accuracy of the applied friction model determines the accuracy of the identified overall model and consequently of the control. This is especially obvious in the case of the PUMA 560 robot, in which the presence of friction is remarkable in some of their joints. Hence, future work should focus on identifying a more precise friction model. The robot model could also be extended by incorporating rotor dynamics and could be applied for different robot configurations as parallel robots.

Originality/value

Gibbs‐Appell equations are used in order to develop the robotic manipulator dynamic model, instead of more usual dynamics formulations, due to several advantages that these exhibit. The obtained non‐physical identified parameters are adapted in order to enable their use in a control algorithm.

Details

Industrial Robot: An International Journal, vol. 38 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 August 2017

Ruolong Qi, Weijia Zhou and Wang Tiejun

Uncertainty can arise for a manipulator because its motion can deviate unpredictably from the assumed dynamical model and because sensors might provide information regarding the…

Abstract

Purpose

Uncertainty can arise for a manipulator because its motion can deviate unpredictably from the assumed dynamical model and because sensors might provide information regarding the system state that is imperfect because of noise and imprecise measurement. This paper aims to propose a method to estimate the probable error ranges of the entire trajectory for a manipulator with motion and sensor uncertainties. The aims are to evaluate whether a manipulator can safely avoid all obstacles under uncertain conditions and to determine the probability that the end effector arrives at its goal area.

Design/methodology/approach

An effective, analytical method is presented to evaluate the trajectory error correctly, and a motion plan was executed using Gaussian models by considering sensor and motion uncertainties. The method used an integrated algorithm that combined a Gaussian error model with an extended Kalman filter and a linear–quadratic regulator. Iterative linearization of the nonlinear dynamics was used around every section of the trajectory to derive all of the prior probability distributions before execution.

Findings

Simulation and experimental results indicate that the proposed trajectory planning method based on the motion and sensor uncertainties is indeed highly convenient and efficient.

Originality/value

The proposed approach is applicable to manipulators with motion and sensor uncertainties. It helps determine the error distribution of the predefined trajectory. Based on the evaluation results, the most appropriate trajectory can be selected among many predefined trajectories according to the error ranges and the probability of arriving at the goal area. The method has been successfully applied to a manipulator operating on the Chinese Space Station.

Details

Industrial Robot: An International Journal, vol. 44 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 April 2024

Aymen Khadr

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the…

Abstract

Purpose

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the dynamic behavior of the developed model is verified using a physical model obtained by Simscape Multibody.

Design/methodology/approach

Firstly, a geometric model is developed using the modified Denavit–Hartenberg method. Then the dynamic model is derived using the algorithm of Newton–Euler. The developed model is performed for a three-wheeled differentially driven robot, which incorporates the slippage of wheels by including the Kiencke tire model to take into account the interaction of wheels with the ground. For the physical model, the mobile robot is designed using Solidworks. Then it is exported to Matlab using Simscape Multibody. The control of the WMR for both models is realized using Matlab/Simulink and aims to ensure efficient tracking of the desired trajectory.

Findings

Simulation results show a good similarity between the two models and verify both longitudinal and lateral behaviors of the WMR. This demonstrates the effectiveness of the developed model using the robotic approach and proves that it is sufficiently precise for the design of control schemes.

Originality/value

The motivation to adopt this robotic approach compared to conventional methods is the fact that it makes it possible to obtain models with a reduced number of operations. Furthermore, it allows the facility of implementation by numerical or symbolical programming. This work serves as a reference link for extending this methodology to other types of mobile robots.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 October 2009

Francisco Rubio, Francisco Valero, Joseph Sunyer and Vicente Mata

The purpose of this paper is to solve the path‐planning problem of industrial robots in complex environments.

Abstract

Purpose

The purpose of this paper is to solve the path‐planning problem of industrial robots in complex environments.

Design/methodology/approach

A direct method (in each step, the path is been recorded) is presented in which the search of the path is made in the state space of the robotic system, and it makes use of the information generated about the characteristics of the process, introducing graph techniques for branching. The method poses an optimization problem that aims at minimizing the distance travelled by the significant points of the robot.

Findings

A new approach to solve the path‐planning problem has been introduced in which the behaviour of three operational parameters (computational time, distance travelled and number of configurations generated) have been analyzed so that the user can choose the most efficient algorithm depending on which parameter he is most interested in.

Research limitations/implications

A new technique has been introduced which yields good results as the examples show.

Practical implications

The algorithm is able to obtain the solution to the path‐planning problem for any industrial robot working in a complex environment.

Originality/value

Gives a new tool for solving the path‐planning problem.

Details

Industrial Robot: An International Journal, vol. 36 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 January 2023

Linqi Xu, Fu Jia, Xiao Lin and Lujie Chen

This study aims to systematically review the current academic literature on the role of technologies in low-carbon supply chain management (SCM), identify and analyse critical…

1311

Abstract

Purpose

This study aims to systematically review the current academic literature on the role of technologies in low-carbon supply chain management (SCM), identify and analyse critical themes and propose an integrated conceptual model.

Design/methodology/approach

A systematic literature review of 48 papers published between 2010 and 2022 was conducted. A conceptual model was advanced.

Findings

Based on the analysis and synthesis of the reviewed papers, this review provides an initial attempt to integrate technology adoption and low-carbon SCM by developing a diffusion of innovation model of technology-enabled low-carbon SCM within the technology–organisation–environment (TOE) framework, in which drivers, enablers and barriers to technology adoption practices are identified. The environmental, economic and social outcomes of adoption practices are also identified.

Originality/value

This study provides a novel and comprehensive roadmap for future research on technology-enabled low-carbon SCM. Furthermore, policy, as well as managerial implications, is presented for policymakers and managers.

Details

Supply Chain Management: An International Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1359-8546

Keywords

1 – 10 of 565